Decomposing Complex Cooperative Ligand Binding into Simple Components: Connections between Microscopic and Macroscopic models.

Alexey Onufriev ${ }^{1}$ and G. Matthias Ullmann ${ }^{2, *}$

${ }^{1}$ Department of Computer Science, 660 McBryde Hall, Virginia Tech, Blacksburg, VA 24061. email: onufriev@cs.vt.edu; Fax: (540)-231-6075
${ }^{2}$ Structural Biology / Bioinformatics, University of Bayreuth, Universitätsstr. 30, BGI, 95447
Bayreuth, Germany, email: Matthias.Ullmann@uni-bayreuth.de; Fax: +49-921-55-3544
submitted to J. Phys. Chem. B.
January 5, 2004

Supporting Information

Details of the Derivation of Cooperativity Measure Ξ

Here we investigate how the slope at the inflection point of decoupled binding curves can be used as a measure of cooperativity. We consider two limiting cases. The maximum cooperativity is achieved if either none or all N ligands bind, i.e. only two states exist: no ligands bound or all ligands bound.

$$
\begin{equation*}
\langle X\rangle=\frac{N e^{-\beta\left(G^{\mathbf{k}}-N \mu_{\mathrm{L}}\right)}}{1+e^{-\beta\left(G^{\mathbf{k}}-N \mu_{\mathrm{L}}\right)}} \tag{1}
\end{equation*}
$$

The first and second derivative of eq 1 are given in eq 2 and 3, respectively.

$$
\begin{gather*}
\frac{\partial\langle X\rangle}{\partial \mu_{\mathrm{L}}}=\frac{\beta N^{2} e^{-\beta\left(G^{\mathbf{k}}-N \mu_{\mathrm{L}}\right)}}{\left(1+e^{-\beta\left(G^{\mathbf{k}}-N \mu_{\mathrm{L}}\right)}\right)^{2}} \tag{2}\\
\frac{\partial^{2}\langle X\rangle}{\partial \mu_{\mathrm{L}}{ }^{2}}=\frac{\beta^{2} N^{3} e^{-\beta\left(G^{\mathbf{k}}-N \mu_{\mathrm{L}}\right)}\left(1-e^{-\beta\left(G^{\mathbf{k}}-N \mu_{\mathrm{L}}\right)}\right)}{\left(1+e^{-\beta\left(G^{\mathbf{k}}-N \mu_{\mathrm{L}}\right)}\right)^{3}} \tag{3}
\end{gather*}
$$

From eq 3 the inflection point μ_{I} of eq 1 is given by eq 4 .

$$
\begin{equation*}
\frac{\partial^{2}\langle X\rangle}{\partial \mu_{\mathrm{I}}{ }^{2}}=0: \quad \mu_{\mathrm{L}}=\frac{G^{\mathbf{k}}}{N} \tag{4}
\end{equation*}
$$

The slope at the inflection point is consequently given by eq 5

$$
\begin{equation*}
\frac{\partial\langle X\rangle\left(\mu_{\mathrm{I}}\right)}{\partial \mu_{\mathrm{L}}}=\frac{\beta N^{2}}{4} \tag{5}
\end{equation*}
$$

Eq 5 gives the maximum possible slope for a binding curve of N ligands and one receptor.
On the other extreme is a non-cooperative system of N non-interacting equivalent sites. The total binding curve of such a system is given by eq 6

$$
\begin{equation*}
\langle X\rangle=N \frac{e^{-\beta\left(G_{i}^{\mathrm{o}}-\mu_{\mathrm{L}}\right)}}{1+e^{-\beta\left(G^{\mathrm{o}}-\mu_{\mathrm{L}}\right)}} \tag{6}
\end{equation*}
$$

The first and the second derivative of eq 6 are given by eqs 7 and 8 .

$$
\begin{gather*}
\frac{\partial\langle X\rangle}{\partial \mu_{\mathrm{L}}}=N \frac{\beta e^{-\beta\left(G^{\circ}-\mu_{\mathrm{L}}\right)}}{\left(1+e^{-\beta\left(G^{\circ}-\mu_{\mathrm{L}}\right)}\right)^{2}} \tag{7}\\
\frac{\partial^{2}\langle X\rangle}{\partial \mu_{\mathrm{L}}{ }^{2}}=N \frac{\beta^{2} e^{-\beta\left(G^{\circ}-\mu_{\mathrm{L}}\right)}\left(1-e^{-\beta\left(G^{\circ}-\mu_{\mathrm{L}}\right)}\right)}{\left(1+e^{-\beta\left(G^{\circ}-\mu_{\mathrm{L}}\right)}\right)^{3}} \tag{8}
\end{gather*}
$$

The slope at the inflection point is then given by eq 9 .

$$
\begin{equation*}
\frac{\partial\langle X\rangle\left(\mu_{\mathrm{I}}\right)}{\partial \mu_{\mathrm{L}}}=\frac{\beta N}{4} \tag{9}
\end{equation*}
$$

The combination of eq 5 and eq 5 suggests the following cooperativity measure Ξ :

$$
\begin{equation*}
\Xi=\left.\frac{4}{\beta N} \frac{\partial\langle X\rangle\left(\mu_{\mathrm{I}}\right)}{\partial \mu_{\mathrm{L}}}\right|_{\text {at the inflection point }} \tag{10}
\end{equation*}
$$

where the normalization factor is chosen so that
for non-cooperative binding: $\quad \Xi=1$
and for fully cooperative binding: $\quad 1<\Xi \leq N$
Cooperativity in the system of two interacting sites. The total binding curve is

$$
\begin{equation*}
\langle X\rangle=\frac{e^{-\beta\left(G_{1}^{\mathrm{o}}-\mu_{\mathrm{L}}\right)}+e^{-\beta\left(G_{2}^{\mathrm{o}}-\mu_{\mathrm{L}}\right)}+2 e^{-\beta\left(G_{1}^{\mathrm{o}}+G_{2}^{\mathrm{o}}+W-2 \mu_{\mathrm{L}}\right)}}{1+e^{-\beta\left(G_{1}^{\mathrm{o}}-\mu_{\mathrm{L}}\right)}+e^{-\beta\left(G_{2}^{\circ}-\mu_{\mathrm{L}}\right)}+e^{-\beta\left(G_{1}^{\mathrm{o}}+G_{2}^{\circ}+W-2 \mu_{\mathrm{L}}\right)}} \tag{11}
\end{equation*}
$$

which can be rewritten with

$$
\begin{align*}
A & =e^{-\beta G_{1}^{\circ}}+e^{-\beta G_{2}^{\circ}} \\
B & =e^{-\beta\left(G_{1}^{\circ}+G_{2}^{\circ}+W\right)} \tag{12}\\
\lambda & =e^{\beta \mu_{\mathrm{L}}}
\end{align*}
$$

Total binding curve

$$
\begin{equation*}
\langle X\rangle=\frac{A \lambda+2 B \lambda^{2}}{1+A \lambda+B \lambda^{2}} \tag{13}
\end{equation*}
$$

First derivative of the Total binding curve is

$$
\begin{equation*}
\frac{\partial\langle X\rangle}{\partial \mu_{\mathrm{L}}}=\frac{\beta \lambda\left(A+4 B \lambda+A B \lambda^{2}\right)}{\left(1+A \lambda+B \lambda^{2}\right)^{2}} \tag{14}
\end{equation*}
$$

Second derivative of the Total binding curve is

$$
\begin{equation*}
\frac{\partial^{2}\langle X\rangle}{\partial \mu_{\mathrm{L}}{ }^{2}}=\frac{\beta^{2} \lambda\left(1-B \lambda^{2}\right)\left(A-B^{2} \lambda+8 B \lambda+A B \lambda^{2}\right)}{\left(1+A \lambda+B \lambda^{2}\right)^{3}} \tag{15}
\end{equation*}
$$

The total binding curve has only one inflection point for cooperative binding curves

$$
\begin{equation*}
\mu_{\mathrm{I}}=-\frac{1}{2} \ln B=\frac{1}{2} \beta\left(G_{1}^{\mathrm{o}}+G_{2}^{\mathrm{o}}-W\right) \Longrightarrow \lambda_{\mathrm{I}}=\frac{1}{\sqrt{B}} \tag{16}
\end{equation*}
$$

The slope of the binding curve eq 13 at its inflection point is

$$
\begin{equation*}
\left.\frac{\partial\langle X\rangle}{\partial \mu_{\mathrm{L}}}\right|_{\lambda_{\mathrm{I}}}=\frac{\beta \lambda_{\mathrm{I}}\left(A+4 B \lambda_{\mathrm{I}}+A B \lambda_{\mathrm{I}}^{2}\right)}{\left(1+A \lambda_{\mathrm{I}}+B \lambda_{\mathrm{I}}^{2}\right)^{2}}=\frac{\beta(4 B+2 A \sqrt{B})}{4 B+4 A \sqrt{B}+A^{2}} \tag{17}
\end{equation*}
$$

The cooperativity measure is then given by

$$
\begin{equation*}
\Xi=2 \frac{4 B+2 A \sqrt{B}}{4 B+4 A \sqrt{B}+A^{2}} \tag{18}
\end{equation*}
$$

Relation of Ξ to the Hill coefficient. For two sites one can show that Ξ is exactly equivalent to the Hill coefficient. Note, however, that this statement is generally not valid for $N>2$ as seen from the examples in the current work. Let Y be saturation of the molecule, i.e.

$$
\begin{equation*}
Y=\frac{1}{N}\langle X\rangle \tag{19}
\end{equation*}
$$

and consider only two interacting sites. The Hill coefficient $n_{\text {Hill }}$ is defined as slope of the $Y /(1-Y)$ curve when the receptor is half saturated.

$$
\begin{equation*}
n_{\text {Hill }}=\frac{\partial \frac{Y}{1-Y}}{\partial \mu_{\mathrm{L}}} \quad \text { at } \quad \mu_{\mathrm{I}}=-\frac{1}{2} \ln B \rightarrow \lambda_{\mathrm{I}}=\frac{1}{\sqrt{B}} \tag{20}
\end{equation*}
$$

From eq 11 one can find that

$$
\begin{align*}
\frac{Y}{1-Y} & =\frac{A \lambda+2 B \lambda^{2}}{2+A \lambda} \tag{21}\\
\frac{\partial \frac{Y}{1-Y}}{\partial \mu_{\mathrm{L}}} & =\frac{2 \lambda\left(A+4 B \lambda+A B \lambda^{2}\right)}{(2+A \lambda)^{2}} \tag{22}\\
n_{\text {Hill }} & =\left.\frac{\partial \frac{Y}{1-Y}}{\partial \mu_{\mathrm{L}}}\right|_{\mu_{\mathrm{I}}} \tag{23}\\
& =\frac{2(2 A \sqrt{B}+4 B)}{4 B+4 A \sqrt{B}+A^{2}} \tag{24}
\end{align*}
$$

From comparison with eq 18 one see that

$$
\begin{equation*}
n_{\text {Hill }}=\Xi \text { for } N=2 \tag{25}
\end{equation*}
$$

Adair equation re-written using microscopic constants.

For the sake of simplicity, we restrict the discussion to the $\mathrm{N}=4$ ligand binding sites. We choose $\mathrm{N}=4$ mainly due to the importance of the hemoglobin test case. The total ligand binding curve of a molecule that can bind N ligands of the same type is given by:

$$
\begin{equation*}
\mathrm{R}+4 \mathrm{~L} \stackrel{\bar{K}_{1}}{\rightleftharpoons} \mathrm{RL}+3 \mathrm{~L} \stackrel{\bar{K}_{2}}{\rightleftharpoons} \mathrm{RL}_{2}+2 \mathrm{~L} \stackrel{\bar{K}_{3}}{\rightleftharpoons} \mathrm{RL}_{3}+\mathrm{L} \stackrel{\bar{K}_{4}}{\rightleftharpoons} \mathrm{RL}_{4} \tag{26}
\end{equation*}
$$

The species RL_{i} is the macrostate of the receptor with i ligands bound. The total binding curve $\langle X\rangle$ is in general described by eq 27 .

$$
\begin{equation*}
\langle X\rangle=\frac{\mathfrak{a}_{1}[\mathrm{~L}]+2 \mathfrak{a}_{2}[\mathrm{~L}]^{2}+3 \mathfrak{a}_{3}[\mathrm{~L}]^{3}+4 \mathfrak{a}_{4}[\mathrm{~L}]^{4}}{1+\mathfrak{a}_{1}[\mathrm{~L}]+\mathfrak{a}_{2}[\mathrm{~L}]^{2}+\mathfrak{a}_{3}[\mathrm{~L}]^{3}+\mathfrak{a}_{4}[\mathrm{~L}]^{4}} \tag{27}
\end{equation*}
$$

In terms of macroscopic binding constants, we have

$$
\begin{align*}
\mathfrak{a}_{1} & =\bar{K}_{1} \\
\mathfrak{a}_{2} & =\bar{K}_{1} \bar{K}_{2} \\
\mathfrak{a}_{3} & =\bar{K}_{1} \bar{K}_{2} \bar{K}_{3} \tag{28}\\
\mathfrak{a}_{4} & =\bar{K}_{1} \bar{K}_{2} \bar{K}_{3} \bar{K}_{4}
\end{align*}
$$

In terms of microscopic binding constants, we have

$$
\begin{align*}
& \mathfrak{a}_{1}=k_{1000}^{0000}+k_{0100}^{0000}+k_{0010}^{0000}+k_{0001}^{0000} \\
& \mathfrak{a}_{2}=k_{1000}^{0000} k_{1100}^{1000}+k_{1000}^{0000} k_{1010}^{1000}+k_{1000}^{0000} k_{1001}^{1000}+k_{000}^{0000} k_{0110}^{0100}+k_{0000}^{0000} k_{0101}^{0100}+k_{0010}^{0000} k_{0011}^{0010} \tag{29}\\
& \mathfrak{a}_{3}=k_{0001}^{0000} k_{0011}^{0001} k_{0111}^{0011}+k_{0001}^{0000} k_{0011}^{0001} k_{1011}^{0011}+k_{0001}^{0000} k_{0001}^{0101} k_{1101}^{0101}+k_{1000}^{0000} k_{1100}^{1000} k_{1110}^{1100} \\
& \mathfrak{a}_{4}=k_{1000}^{0000} k_{1100}^{1000} k_{1110}^{1100} k_{1111}^{1110}
\end{align*}
$$

Different combinations of microscopic constants can yield the same coefficients \mathfrak{a}_{i}.
Adair ${ }^{1-3}$ developed a model in which it is assumed that all of the ligands bind with the same affinity to the same macrostate, i.e., $k_{1}=k_{1000}^{0000}=k_{0100}^{0000} \ldots, k_{2}=k_{1100}^{1000}=k_{1010}^{1000}=\ldots$, etc. This assumption implies that all binding sites are equivalent. The coefficients in eq 27 are then given by

$$
\begin{align*}
& \mathfrak{a}_{1}=4 k_{1} \\
& \mathfrak{a}_{2}=6 k_{1} k_{2} \\
& \mathfrak{a}_{3}=4 k_{1} k_{2} k_{3} \tag{30}\\
& \mathfrak{a}_{4}=k_{1} k_{2} k_{3} k_{4}
\end{align*}
$$

Comparing eq 28 with eq 30, one finds

$$
\begin{align*}
k_{1} & =\frac{1}{4} \bar{K}_{1} \\
k_{2} & =\frac{2}{3} \bar{K}_{2} \\
k_{3} & =\frac{3}{2} \bar{K}_{3} \tag{31}\\
k_{4} & =4 \bar{K}_{4}
\end{align*}
$$

The Adair model is equivalent to eq 27 considering eq 31. Thus, the Adair model with N binding sites can always fit a binding curve of N th degree. However, from a good fit to the Adair equation one can not conclude that binding constants for binding of the i th ligand are all equal.

References

[1] Adair, G. S. (1925) J. Biol. Chem. 63, 529-538.
[2] Chein, J. C. W \& Mayo, K. H. (1980) J. Biol. Chem. 225, 9790-9799.
[3] Voet, D \& Voet, J. G. (1995) Biochemistry. (New York), 2 edition.

