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Details of the Derivation of Cooperativity Measure=

Here we investigate how the slope at the inflection point of decoupled binding curves can be

used as a measure of cooperativity. We consider two limiting cases. The maximum cooperativity is

achieved if either none or aN ligands bind, i.e. only two states exist: no ligands bound or all ligands

bound.
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The first and second derivative of eq 1 are given in eq 2 and 3, respectively.
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From eq 3 the inflection point; of eq 1 is given by eq 4.
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The slope at the inflection point is consequently given by eq 5
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Eq 5 gives the maximum possible slope for a binding curv&’ digands and one receptor.
On the other extreme is a non-cooperative systef abn-interacting equivalent sites.
binding curve of such a system is given by eq 6
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The first and the second derivative of eq 6 are given by eqs 7 and 8.
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The slope at the inflection point is then given by eq 9.

O(X)(m) _ BN
a,LLL 4

(1)

()

®3)

(4)

()

The total

(6)

(7)

(8)

9)



The combination of eq 5 and eq 5 suggests the following cooperativity measure
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where the normalization factor is chosen so that

for non-cooperative binding: ==1
and for fully cooperative binding: 1 < = < N
Cooperativity in the system of two interacting sitéghe total binding curve is
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which can be rewritten with
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Total binding curve
<X>__.AA+QBA2
1+ AN+ BX?

First derivative of the Total binding curve is
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Second derivative of the Total binding curve is
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The total binding curve has only one inflection point for cooperative binding curves
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The slope of the binding curve eq 13 at its inflection point is
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The cooperativity measure is then given by
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Relation of = to the Hill coefficient. For two sites one can show thatis exactly equivalent to
the Hill coefficient. Note, however, that this statement is generally not valid'for 2 as seen from

the examples in the current work. L¥tbe saturation of the molecule, i.e.
Y = —(X) (19)

and consider only two interacting sites. The Hill coefficiept, is defined as slope of thé/(1 —Y)

curve when the receptor is half saturated.
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From eq 11 one can find that
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From comparison with eq 18 one see that
ngiy == for N = 2. (25)

Adair equation re-written using microscopic constants.

For the sake of simplicity, we restrict the discussion to the N=4 ligand binding sites. We choose
N=4 mainly due to the importance of the hemoglobin test case. The total ligand binding curve of a

molecule that can bind/ ligands of the same type is given by:
) K, K K,
R+4L=RL+3L=RL;+2L=RL3+L=RIL4 (26)

The species RLis the macrostate of the receptor witigands bound. The total binding cury&’)
is in general described by eq 27.

a1 [L] + 2 ap[L)* + 3 a3[L]® + 4 a4[L]*
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In terms of macroscopic binding constants, we have

a; = ?1
ay = KK, (28)
as = K1F2F3
ag = F1K2F3K4
In terms of microscopic binding constants, we have
_ 1.0000 0000 0000 0000
a1 = kigoo t Koioo T Kooio + Kooor
__ 1.00007.1000 0000 71000 0000 7.1000 0000 7,0100 0000 7.0100 0000 7.0010
a2 = Kigook1i00 T F1o00K1010 T Kioook1001 + Korookoiio + Korookoio1 + KootoKooii (29)
__ 1.00007.00017.0011 0000 7.0001 7,0011 00007.0101 70101 0000 7.10007.1100
a3 = kooo1 ko011 ko111 T Kooo1 Koot Fio11 + Kooo1 Koot Ki101 + KioooK1100K1110
__ 1.00007,10007.11007.1110
as = Kigookii00k1110%1111

Different combinations of microscopic constants can yield the same coeffiaients
Adair'~2 developed a model in which it is assumed that all of the ligands bind with the same
affinity to the same macrostate, i.&;, = k%00 = k000-.., ko = k%0 = k{00 = ..., etc. This

assumption implies that all binding sites are equivalent. The coefficients in eq 27 are then given by

a, = 4k
as = 6kiko (30)
ag = 4kikoks
ay = kikoksky
Comparing eq 28 with eq 30, one finds
ki = 1K,
b = 5K (31)
ky = K,
ky = 4K,

The Adair model is equivalent to eq 27 considering eq 31. Thus, the Adair modeNnitimding
sites can always fit a binding curve ofth degree. However, from a good fit to the Adair equation

one camot concludehat binding constants for binding of thh ligand are all equal.
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