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1. Inflection Points of Titration Curves

Monoprotic Acid. The titration curve of a monoprotic acid is given by eq 1 which is

algebraically equivalent to the Henderson-Hasselbalch equation.

〈x〉 =
10pKa−pH

1 + 10pKa−pH
(1)

The first and second derivative of the titration curve in eq 1 are given by eq 2 and 3, respectively.

∂〈x〉
∂pH

=
a10pKa−pH

(1 + 10pKa−pH)2
(2)

∂2〈x〉
∂pH2 =

(ln 10)210pKa−pH(1 − 10pKa−pH)

(1 + 10pKa−pH)3
(3)

At the inflection point, the second derivative of eq 1, i.e. eq 3, becomes zero, which is exactly

the case whenpKa value equals thepH value. For a monoprotic acid, the pKa value calculated

from the partition function, from the protonation probabilities, and the inflection point, and the

pK1/2 value all coincide with the pKa value of the protonatable group.
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Figure 1: Titration curve of a monoprotic acid with pKa=7.0 (solid line) and the second deriva-

tive of this titration curve (dashed line). The pKa value of the monoprotic acid which is 7.0

coincides with the inflection point of the titration curve and the pH at which the protonation

probability is 0.5.
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Figure 2: a) Comparison of the real part of the inflection points (dashed lines) of the titration

curves and the quasi-site pK
′
j values (solid lines) of a system of two interacting identical sites

having the microscopic binding constants pK10
00=pK01

00=7.0 in dependence on the interactionW

between the two sites. b) Differences between the inflection points of the titration curve and the

quasi-site pK
′
j values of this diprotic acid.

Diprotic Acid. The total protonation〈X〉 of a molecule is given by the sum of the proba-

bility of each state multiplied by the number of protons bound to it:〈X〉 = 〈(10)〉 + 〈(01)〉 +

2 〈(11)〉. For the sake of simplicity, we definea = 10pK10
00 , b = 10pK01

00 , c = 10pK10
00+pK01

00−W ,

andλ = 10−pH and obtain eq 4.

〈X〉 =
(a + b)λ + 2cλ2

1 + (a + b)λ + cλ2
(4)

This curve would be measured by techniques that look at the system as a whole such as poten-

tiometry and not at individual chemical groups in the molecule.

The total titration curve of a molecule with two interacting sites has three inflection points,

which are given by eq 5. Some of these inflection points may be complex even though the two

protons repel each other.

Yo =
1

2
(pK10

00 + pK01
00 −W ) (5)

Y1,2 = lg

(
(a + b)2 − 8c ±

√
(a + b)4 − 20(a + b)2c + 64c2

2(a + b)c

)
The inflection points do not correspond to the macroscopic pKk or the quasi-site pK

′
j values of

the system. Only for largeW , the inflection pointsY1 andY2 and the macroscopic pKk or the
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quasi-site pK
′
j values of the system coincide.

For largeW or ∆pK, the inflection pointsY1,2 from eq 5 give good estimates for the quasi-

site pK
′
i values. Y1,2 in eq 5 gets complex when the two branches in Figure 2a merge. The

titration curve has then only a single real inflection pointYo, which is identical with the real

parts ofY1,2. Figure 2 shows the deviation of the inflection points from the quasi-site pK
′
a values

for two identical sites in dependence on the interaction between the two sites. Since protons

should repel each other, we consider only positive and not negative interaction, which would

correspond to attraction. The deviation between the inflection points from the macroscopic pK
′
a

values is the biggest, when the interaction between the sites is small.

The equations for the inflection points of the individual titration curves are very compli-

cated and would fill several pages. In general one can say that each of the individual titration

curves has four inflection points of which some may be complex. The inflection points of the

total titration curves and of the individual titration curves approach each other only for large

interaction energies.

Polyprotic Acid. From the decoupled sites representation, it is known that the total titration

curve of a molecule that can bindN protons can be written as a sum ofN titration curves

of non-interacting quasi-sites each having a pK
′
j value which is related to the free energy of

binding a proton to this this quasi-site by∆Go′
j = −β−1 ln 10 pK

′
j.

〈X〉 =
N∑

j=1

e−β(∆Go′
j −µH+ )

1 + e−β(∆Go′
j −µH+ )

(6)

The first and the second derivative of the total titration curve become therefore:

∂〈X〉
∂µH+

=
N∑

j=1

∂〈yj〉
∂µH+

=
N∑

j=1

βe−β(∆Go′
j −µH+ )

(1 + e−β(∆Go′
j −µH+ ))2

(7)

∂2〈X〉
∂µL

2
=

N∑
j=1

∂2〈yj〉
∂µH+2

=
N∑

j=1

β2e−β(∆Go′
j −µH+ )(1− e−β(∆Go′

j −µH+ ))

(1 + e−β(∆Go′
j −µH+ ))3

(8)

=

N∑
j=1

(
β2e−β(∆Go′

j −µH+ )(1− e−β(∆Go′
j −µH+ ))

N∏
s=1,s 6=j

(1 + e−β(∆Go′
s −µH+ ))3

)
N∏

j=1

(1 + e−β(∆Go′
j −µH+ ))3

(9)

The titration curves of individual sites are a linear combination of the titration curves of the
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quasi-sites.

〈xi〉 =
N∑

j=1

aij
e−β(∆Go′

j −µH+ )

1 + e−β(∆Go′
j −µH+ )

(10)

The first and the second derivative of the titration curves of the individual sites are:

∂〈xi〉
∂µH+

=
N∑

j=1

aij
∂〈yj〉
∂µH+

=
N∑

j=1

aij
βe−β(∆Go′

j −µH+ )

(1 + e−β(∆Go′
j −µH+ ))2

(11)

∂2〈xi〉
∂µH+

2
=

N∑
j=1

aij
∂2〈yj〉
∂µH+

2
=

N∑
j=1

aij
β2e−β(∆Go′

j −µH+ )(1 − e−β(∆Go′
j −µH+ ))

(1 + e−β(∆Go′
j −µH+ ))3

(12)

From the equations and from the graphical representation of the equations in the main text

one can see that the inflection points of total and individual titration curves can not be identified

with pKa values in the case of polyprotic acids.
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How to Get Microscopic Constants from the Decoupled Sites

Representation

The quasi-site pK
′
j values can be obtained from the root of the partition function which can

be written in terms of macroscopic constants. The quasi-site pK
′
j values can then be used to

obtain the coefficientsaij of the linear combination by fitting the titration curves of individual

sites. The constraints that the sum over all rows and over all columns must be one can be used

as a constraint in the fit, for instance by using Lagrange multipliers. The obtained pK
′
j values

andaij coefficients can then be used to calculate the microscopic constants for di- and triprotic

acids. In the case of polyprotic acids with more then three sites, either symmetry or special

assumptions are required to obtain the microscopic constants from individual titration curves.

Diprotic Acid. From eqs 17 to 19 in the main text follows that

10pK10
00 = a1110pK

′
1 + a1210pK

′
2

10pK01
00 = a2110pK

′
1 + a2210pK

′
2

10pK10
00+pK11

10 = a1110pK
′
1+pK

′
2 + a1210pK

′
1+pK

′
2

10pK01
00+pK11

01 = a2110pK
′
1+pK

′
2 + a2210pK

′
1+pK

′
2 (13)

From this equation, one can derive eq 21 in the main text that give the microscopic constants

in terms of quasi-site constants and the linear coefficientsaij of the DSR. One should note that

the there is only one free linear coefficients, the other coefficient are all defined because of

constraints that the sum over all row and over all columns must be 1.

Triprotic Acid. From eqs 17 to 19 in the main text and by setting the free energy of the

totally deprotonated state to zero follows that

e
−βGo

000 = 1 (14)

e
−βGo

100 = a1110
pK

′
1 + a1210

pK
′
2 + a1310

pK
′
3 (15)

e
−βGo

010 = a2110
pK

′
1 + a2210

pK
′
2 + a2310

pK
′
3 (16)

e
−βGo

001 = a3110
pK

′
1 + a3210

pK
′
2 + a3310

pK
′
3 (17)

e
−βGo

110 + e
−βGo

101 = a11
(
10

pK
′
1+pK

′
2 + 10

pK
′
1+pK

′
3

)
+ a12

(
10

pK
′
1+pK

′
2 + 10

pK
′
2+pK

′
3

)
+ a13

(
10

pK
′
2+pK

′
3 + 10

pK
′
1+pK

′
3

)
(18)

e
−βGo

110 + e
−βGo

011 = a21
(
10

pK
′
1+pK

′
2 + 10

pK
′
1+pK

′
3

)
+ a22

(
10

pK
′
1+pK

′
2 + 10

pK
′
2+pK

′
3

)
+ a23

(
10

pK
′
2+pK

′
3 + 10

pK
′
1+pK

′
3

)
(19)

e
−βGo

101 + e
−βGo

011 = a31
(
10

pK
′
1+pK

′
2 + 10

pK
′
1+pK

′
3

)
+ a32

(
10

pK
′
1+pK

′
2 + 10

pK
′
2+pK

′
3

)
+ a33

(
10

pK
′
2+pK

′
3 + 10

pK
′
1+pK

′
3

)
(20)

e
−βGo

111 = a3110
pK

′
1+pK

′
2+pK

′
3 + a3210

pK
′
1+pK

′
2+pK

′
3 + a3310

pK
′
1+pK

′
2+pK

′
3 (21)
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These eight equations are sufficient to calculate the energy of all the eight possible pro-

tonation states and thus of the difference between the energies of the protonation states. The

energy of the totally deprotonated state is set to zero (eq 14). The energy of the single proto-

nated and the totally protonated states can be directly obtained by taking the negative of the

logarithm of eqs 15, 16, 17, and 21 and dividing this number byβ. To obtain the energies of the

doubly-protonated states, we define eqs 22-24.

A = a11
(
10

pK
′
1+pK

′
2 + 10

pK
′
1+pK

′
3

)
+ a12

(
10

pK
′
1+pK

′
2 + 10

pK
′
2+pK

′
3

)
+ a13

(
10

pK
′
2+pK

′
3 + 10

pK
′
1+pK

′
3

)
(22)

B = a21
(
10

pK
′
1+pK

′
2 + 10

pK
′
1+pK

′
3

)
+ a22

(
10

pK
′
1+pK

′
2 + 10

pK
′
2+pK

′
3

)
+ a23

(
10

pK
′
2+pK

′
3 + 10

pK
′
1+pK

′
3

)
(23)

C = a31
(
10

pK
′
1+pK

′
2 + 10

pK
′
1+pK

′
3

)
+ a32

(
10

pK
′
1+pK

′
2 + 10

pK
′
2+pK

′
3

)
+ a33

(
10

pK
′
2+pK

′
3 + 10

pK
′
1+pK

′
3

)
(24)

From these equations, we finally obtain the energies of the doubly-protonated states by

taking the negative of the logarithm of eqs 25, 26, and 27.

e−βGo
110 =

1

2

(
A + B − C

)
(25)

e−βGo
101 =

1

2

(
A −B + C

)
(26)

e−βGo
011 =

1

2

(
− A + B + C

)
(27)

The microscopicpKp
r are given by

pKp
r = −β ln 10 (Go

p −Go
r) (28)

where the superscriptsp marks the product state and the subscriptr marks the reactant state.

7


